

Real-Time
Video Delivery
with Market-Based
Resource Allocation

Sun Microsystems Laboratories, Inc.

SunConnect, Inc.

Agorics, Inc.

Agorics Technical Report ADd004P

Introduction ...1

1. Overview ..3

2. Components of the demonstration....................................5

2.1.

Fractal Reserve Banking ..7

2.1.1.

Interface... 9

2.1.2.

Usage ... 9

2.2.

The general ongoing auction protocol ...11

2.3.

Bandwidth-specific auction ...17

2.3.1.

Modeling the network.. 17

2.3.2.

The bandwidth auctioneer ... 20

2.4.

Bidding agents and their strategies ..21

2.5.

Deliverators..23

2.6.

Application/user interfaces for bidding agents ..23

2.7.

Interaction of the components..24

3. Bibliography ..25

Real-Time Video Delivery with Market-Based Resource Allocation 1

Introduction

This report documents a real-time video delivery system, developed by Sun
Microsystems and Agorics, Inc., to demonstrate how computational resources
such as CPU time and ATM network bandwidth may be allocated based on
markets, internal to the computer system, on which these resources are bought,
sold, and traded. This technique of

agoric computation

 (also known as

compu-

tational markets

) applies economic insights to the automatic management of
computational resources. (For further information on agoric computation, see
the attached reports “An Introduction to Agoric Computation” and “Architec-
tural Issues in Agoric Open Systems”.) This report provides a detailed
technical discussion of the components of the current system and how they
interact to produce the behavior demonstrated. These components include:

• A system of

 banking and currency

to represent a software object’s bud-
get and its payments to other objects

• A set of protocols enabling software objects to participate in automated

auctions

 of computational resources or composite packages of resources

•

Bidding agents

—software objects that represent application programs in
these auctions, expressing the application’s resource needs and bidding
on behalf of the application to fill them

•

Auctioneers

 that each allocate an available resource, in real time, for its
highest-valued uses, based on the stated needs of the programs contend-
ing for the resource

•

Delivery agents

, such as schedulers and I/O controllers, which provide
resources to applications, based on the allocation arrived at by the auc-
tioneer

•

Application and user interfaces

 for bidding agents, which translate user
preferences or application needs into bidding strategies and state bids for
resources to the auctioneers and delivery agents

The term agoric derives from the

Greek word agora, the open

square that served as the market-

place and forum for public

discussion.

2 Agorics Technical Report ADd004P

Real-Time Video Delivery with Market-Based Resource Allocation 3

1. Overview

The

agoric paradox

 is the observation that

the cheaper a resource becomes,

the more important it is to have automatic management of that resource

in a principled fashion.

 This is because increased capacity makes it possible

to apply that resource to lower-value uses. When a resource is expensive, all

uses, in order to be worth the amount they consume, must exceed some mini-

mum value to their users, so all uses of an expensive resource have high and

comparable values. Also, because individual uses of an expensive resource

have high value, it is both easy and worthwhile to manage the resource manu-

ally. When the price per unit of that resource drops by multiple orders of

magnitude, uses that have a low value per resource unit become feasible, but

these low-value uses can crowd out the high-value uses if there is no way to

express the value differences—and manual management of the resource

becomes prohibitively difficult, as well as expensive (relative to the value of

the use of the resource).

For example, the transition to fiber data communication makes possible band-

width-intensive applications like video. It might seem, since fiber has so much

more bandwidth than previous communications media, that existing network

allocation policies (like Ethernet) can simply be scaled. However, in the case

of Ethernet, the amount of bandwidth that an application gets is proportional to

how much it asks for and how often it asks. In such a regime, network users

trying to transmit, for example, electronic mail may find network performance

significantly reduced by the presence of video users, even though both the data

users and video users would agree that the value per bit of e-mail is far higher

than that of video data—a megabyte of capacity would carry an entire day’s

correspondence for a large company but amount to only a single frame of high-

resolution video, which the video user could drop without noticing. Expanding

A B

A B

DATA TRAFFIC

DATA TRAFFIC

VIDEO

Low-Capacity Network

High-Capacity Network

Fig. 1.1 The Agoric Paradox

Some large companies have had

to resort to the outright banning of

digital video on internal networks

because of the unmanageable

impact on network performance for

other users.

Overview

4 Agorics Technical Report ADd004P

the overall capacity of the network will not address the problem, because the
higher capacity of the network invites still more video use. Non-agoric proto-
cols provide no way to express this value difference. Thus economic
abstractions—price and value—

meaningful to the system and automatically

taken into account

, are needed in order to manage abundant computing
resources. (Such mechanisms must also be flexible enough to accommodate
the instances when the video

is

 more valuable than other data.)We do not claim that computa-

tional markets are the only

possible solution to this problem—

only that agoric systems are supe-

rior to the status quo, and the most

practical solution yet put forward.

Real-Time Video Delivery with Market-Based Resource Allocation 5

2. Components of the demonstration

This report documents a demonstration system that implements techniques for

solving the agoric paradox with respect to video. The demonstration shows a

video delivery system operating over an asynchronous transfer mode (ATM)

wideband network. CPU time and network bandwidth are allocated agorically.

Users are provided with a graphical user interface (the

Q-P GUI

) allowing

them to specify their preferences with regard to tradeoffs between image qual-

ity and price, and displaying the current price being paid for the video delivery

circuit.

As video sessions begin and end, the market price of network bandwidth fluc-

tuates in response to overall demand; the picture quality of each user’s video

changes in response—improving quality due to the availability of more band-

width when prices fall; graceful degradation of picture quality when the

network is busy and bandwidth becomes expensive. The user sets these trade-

off points once, in terms of what each individual level of picture quality is

worth to him or her, and can then ignore the settings—the viewer application

will automatically implement the user’s stated preferences as conditions

change.

Figure 2.2 shows a schematic diagram of the planned overall structure of the

video delivery system. Double-ended arrows indicate the negotiation dialogue

between clients and servers, while the wide bars containing single-headed

Fig. 2.1 A sketch of the video viewer. On the right is the video window, displaying

the video requested by the user. On the left is a simple quality-price bidding

interface, allowing the user to specify how much the user is willing to pay for

six different pre-defined levels of video quality.

Components of the demonstration

6 Agorics Technical Report ADd004P

arrows indicate the delivery of those services to the purchaser. The system con-
sists of:

•

The video viewer.

 This client application displays on the user’s worksta-
tion digital video transmitted over the network from a video server else-
where on the network. The viewer presents the user with interfaces for
selecting the desired video clip and for specifying the maximum prices
the user is willing to pay for specific levels of picture quality. The viewer
application also includes a bidding agent which translates the user’s
preferences into a bidding strategy for securing the resources (such as
processor time and bandwidth) needed for transmitting and displaying
the video

•

The video server.

 This application accepts bids from the viewer’s bid-
ding agent, decomposes them to bid for the separate resources (processor
time and network bandwidth) needed by the server to provide the ser-
vice, and transmits the video at the agreed-upon level of quality to the
viewer.

•

The bandwidth auctioneer

 accepts bids from one or more video serv-
ers, on behalf of one or more viewer-clients per server, competing to pur-
chase ATM virtual circuits for delivery of video. The bandwidth
auctioneer may be on the same machine as any video client or server, or
on a separate machine.

•

The bandwidth deliverator

 is the virtual circuit manager for the ATM
network. It establishes virtual circuits over the ATM network to convey
video from servers to clients, as determined by the results of the band-
width auction. The auctioneer and the deliverator update the allocation
and pricing of bandwidth in real time, responding to changes in demand
for bandwidth as video sessions begin or end and as users’ preferences
change.

Fig. 2.2 Overall structure of video delivery system

Video Window

Local

Auction
Auctioneer

Video Server

CPU Deliverator
(Scheduler)

CPU

Video Server’s Machine

Video Client’s Machine

Distributed

Auction
Auctioneer

Bandwidth

Q-P GUI

Bidding Agent

Bandwidth Deliverator
(VC Manager)

Bidding Protocol Delivery

Composite

Video

CPU

Bandwidth

Local

Auction
Auctioneer

CPU Deliverator
(Scheduler)

CPU

Video ViewerBidding Agent

Anywhere

The present version of the demon-

stration implements a centralized

auctioneer: the auction runs on a

single machine of the network, and

all clients of the auctioneer must

communicate with that machine to

participate in the auction. In subse-

quent implementations, the

bandwidth auction will be distrib-

uted to enable separation of

administration issues and trust-

boundary issues, permit a diversity

of auction policies to coexist,

reduce communications latency,

and ensure more effective scaling

to larger systems.

Fractal Reserve Banking

Real-Time Video Delivery with Market-Based Resource Allocation 7

We currently implement a separate deliverator for each host in the ATM
network because present ATM switch designs make it infeasible to con-
trol virtual circuits directly.

•

The CPU auctioneer and scheduler.

 Each machine also implements a
local auction in processor time. Applications submit bids to a CPU auc-
tioneer, which calculates the results of the auction and tells the CPU
deliverator, or scheduler, which processes to run at what times.

Note:

The present incarnation of the demonstration does not implement the
CPU auction. The planned design of the system calls for an agoric ver-
sion of the technique described in “A Scheduling Facility in Support of
Multimedia Applications” by Nieh, Northcutt,

et al

.

•

Fractal Reserve Banking.

 This is our name for a system of hierarchical
accounts representing drawing authority on computational budgets. Pay-
ments between software objects take the form of transfer of access to a
particular fractal reserve account from the purchaser to the seller. The
hierarchical nature of these accounts, as explained in the next section,
enables flexibly secure management of budgetary drawing authority
among software objects.

•

Interfaces

 for communication among these components.

The following sections provide more detailed descriptions of the interfaces to,
and current implementations of, the components of the demonstration system.

2.1. Fractal Reserve Banking

The term

fractal reserve banking

 refers to a system of accounts that imple-
ments hierarchical ownership and drawing authority. The accounts in this
system are hierarchical because each can have multiple sub-accounts, each of
which is budgeted drawing power on the parent account. The system is “frac-
tal” because it applies the device of fractional reserve banking recursively. The
logical relationship of pieces to wholes does not change at different levels of
granularity—the system exhibits the fractal property of

self-similarity

.

In Figure 2.3,

A

,

B

, and

C

 are each the top-level or “root” account of a separate
currency. Each top-level account can be thought of as the supply of a single
currency. In this model, there is no primitive exchange between currencies;
each is completely separate.

A hierarchical account can create sub-accounts with arbitrary budgets. The
budgets an account may assign to its subaccounts are unlimited. When a sub-
account within that account needs to transfer funds outside of the ancestor
account, however, the amount is limited by the budget of the ancestor account.
This is because the budgets of their respective ancestor accounts must be bal-
anced as well. In Figure 2.4, any amount (up to the budget of

A11

) can be
transferred from

A11

 to

A12

, because these are totally internal to the

A1

 par-

Fig. 2.3 Tree of hierarchical accounts

A B C

A1 A2 A3 C1

A21 A22 C11 C12

(level 0)

(level 1)

(level 2)

B1 B2 B3 C2

A31

Components of the demonstration

8 Agorics Technical Report ADd004P

ent account; however, the transfer of 400 credits from

A12

 to

A21

 must be

covered by a corresponding transfer from

A12

’s parent

A1

 to

A21

’s parent

A2

.

The maximum amount for such a move is

A1

’s budget of 5,000 tokens.

In general, the amount that can be transferred from one account to another any-

where in the hierarchy is the minimum of the budgets of the accounts on the

path from the donor account to the nearest ancestor it has in common with the

recipient account (not including the common ancestor account itself).

For example, in Figure 2.5, the most that could be transferred from

A122

 to

A2

or any of its descendants is 5,000 tokens, the minimum among the budgets of

A122

 and its ancestors

A12

 and

A1

. The most that could be transferred from

A211

 to

A1

 or any of its subaccounts is 1,000, the minimum of the budgets of

A211

,

A21

, and

A2

.

The motivation for fractal reserve banking is to enable a server (any software

object that provides computational services to other objects) to more easily

subcontract for what it needs in order to provide service to its clients. The cli-

ent can, in effect, write a blank check of limited size—”I will pay you up to but

not more than $X for this specified amount of service.”

The server can then, in turn, use subaccounts of this account to pay its suppli-

ers, budgeting fractions of that amount for each of the more basic services it

needs (CPU, bandwidth). The fractal nature of the accounts allows the total of

these budgets (but not the total of expenditures) to exceed the total contents of

the account.

A (400)

A1 (5000) A2 (7000)

A12 (12,000)A11 A21 (1000) A22

400

400

Fig. 2.4 Transfer of funds. All accounts along the path from the paying

account to the common ancestor are decremented by the

amount of the transfer (in this case, 400 units); all accounts

that are ancestors of the payee account are incremented by

that amount.

A (400) = first common ancestor

Fig. 2.5 Nearest common ancestor for two accounts

A1 (5000) = min along path A2 (7000)

A11 A12 (12,000) A21 (1000)

A121 A122 (6000)

A22

A212A211 (4000)

Fractal Reserve Banking

Real-Time Video Delivery with Market-Based Resource Allocation 9

2.1.1. Interface

The public messages to which valid implementations of

Account

 will respond
are

withdraw

,

budget

,

deposit

,

balance

, and

isSameCurrency

. New cur-
rencies are created with the static method

newCurrency

.

The

withdraw

 message instructs the account to create a sibling account and
transfer

amount

 from its own balance to the new account. The result returned
is a pointer to the new account. Because this new account is created by its sib-
ling, its budget must be deducted from the budget of the original account;
money is conserved between siblings.

The

budget

 message instructs the account to create a new subaccount, with an
initial budget of

amount

, which (since it is simply drawing authority on the
parent account) can be arbitrary. It returns a pointer to the new subaccount.

The

deposit

 message transfers

amount

 from the account

source

 to

this

account.

The

balance

 message takes as arguments an amount

max

 and another account

destination

; it addresses the question “Could

this

 account transfer

max

tokens into

destination

?” It returns the minimum of

max

 and the greatest
allowable transfer (equal to the minimum of all the balances of ancestors from
this account’s parent to the common ancestor of this and destination). The
candidate amount max is present to avoid infinities in the protocol.

The static method newCurrency is what we call a “pseudo-constructor”. It is
used to create a new currency.

2.1.2. Usage

The suffix “Impl” (short for implementation) is a CORBA convention indicat-
ing that “FooImpl” is a specific implementation of a software object satisfying
the interface “Foo”. A C++ regression test file called frbank-t.cc illustrates the
use of our AccountImpl:

From frbank.idl:

interface Account {

 //...

 Account withdraw (in Integer amount)

 raises (InsufficientFunds, NegativeAmount, WithdrawFromRoot);

 Account budget (in Integer amount)

 raises (NegativeAmount);

 Integer deposit (in Account source, in Integer amount)

 raises (InsufficientFunds, NegativeAmount, DifferentCurrency);

 Integer balance (in Account destination, in Integer max)

 raises (NegativeAmount, DifferentCurrency);

 boolean isSameCurrency (in Account other);

 static Account newCurrency ();

}

From frbank-t.cc:

Interfaces to system components

are presented in this report in

CORBA/IDL (the Interface

Description Language of the Com-

mon Object Request Broker

Architecture), the proposed stan-

dard language for the definition of

interobject communication inter-

faces. Fragments of test code are

in C++, the actual implementation

language for the components of

the demonstration.

Components of the demonstration

10 Agorics Technical Report ADd004P

First, a new currency is created, with root as its top-level account. Subaccounts
foo and bar are created, with initial budgets of 100 and 200 tokens, respec-
tively, as well as a subaccount of foo called sub with a budget of 1000.

At this point, the three accounts, when printed with the << operator, look like
this:

Next, 20 tokens are transferred from sub to bar:

Printing the three accounts reveals the changed balances:

The budget of sub’s parent foo has also been diminished by 20 tokens (as in
Figure 2.4 above). The amount that can be transferred between two accounts is
limited by the budgets of the donor account’s ancestors, as the rest of frbank-
t.cc shows.

#include “frbank.hh”

int main (int ac, char *av[])

{

 //...

 AccountRef root = Account::newCurrency ();

 AccountRef foo = root->budget (100);

 AccountRef sub = foo->budget (1000);

 AccountRef bar = root->budget (200);

From frbank-t.cc:

 cerr << "foo: " << foo << "\n";
 cerr << "sub: " << sub << "\n";

 cerr << "bar: " << bar << "\n\n";

From frbank-t.reg:

foo: AccountImpl(level: 1, budget: 100)

sub: AccountImpl(level: 2, budget: 1000)

bar: AccountImpl(level: 1, budget: 200)

From frbank-t.cc:

bar->deposit (sub, 20);

 cerr << "foo: " << foo << "\n";

 cerr << "sub: " << sub << "\n";

 cerr << "bar: " << bar << "\n";

From frbank-t.reg:

foo: AccountImpl(level: 1, budget: 80)

sub: AccountImpl(level: 2, budget: 980)

bar: AccountImpl(level: 1, budget: 220)

From frbank-t.cc:

 try {

 bar->deposit (sub, 200);

 } catch (UserException * ex) {

 cerr << "caught " << UserExceptionRef(ex) << "\n";

 }

The filename extension “.reg” indi-

cates the output from a regression

test.

The general ongoing auction protocol

Real-Time Video Delivery with Market-Based Resource Allocation 11

The amount of the transfer is greater than the budget of foo, so it raises the
InsufficientFunds exception:

2.2. The general ongoing auction protocol

The file auction.idl describes the interfaces for the generic Auction protocol.
The major players in the generalized Auction are:

• the Deliverator, which provides some resource or service and charges for
its use;

• the Auctioneer, which accepts bids from applications that wish to use the
resource, and which decides the allocation and salePrice for the
resource; and

• various Bidding Agents which submit bids to the Auctioneer to buy ser-
vice for themselves or other programs.

The Bidder shown here might be an application program buying for itself.
However, it might instead be a server program acting on behalf of a client to
which it is providing some service, accepting bids from the client in very dif-
ferent terms than those understood by the Auctioneer, and translating them into
the Auctioneer’s terms in order to buy the resources to provide that service. A
video-viewer client might express its preferences in terms of specific levels of
quality of service (monochrome vs. color, frame rate, resolution). The server
providing the video may need a variety of resources (ATM bandwidth, CPU
time, disk bandwidth) to deliver service, and have to bid for each resource in a
separate auction, in the terms specific to that resource. Section 2.4 presents the
set of interfaces for bidding agents. For discussion of the general Auction pro-
tocol, assume a simple Bidder purchasing a resource for itself.

Figure 2.6 shows the sequence of message-passing that occurs when the proto-
col is initiated by the Bidder, which sends the newService message to a
Deliverator. The complexity of this protocol results from the necessity of
making the auctioneer distinct from the seller (the Deliverator). A seller run-
ning its own auction could, in a properly-encapsulated system, undetectably
defraud its clients; the auctioneer therefore needs to be a “third party” indepen-

From frbank-t.reg:

caught InsufficientFunds(shortfall: 120, whereNeeded:

AccountImpl(level: 2, budget: 980))

Bidder

Deliverator

(1) newService()

(2) newBidSlate()

(3) bidSlateEnvelope

(4) bidSlateEnvelope

(8) unseal (bidSlate-
Envelope)

(9) bidSlate

Fig. 2.6 Message-passing sequence to establish communications for bidding

Auctioneer

Components of the demonstration

12 Agorics Technical Report ADd004P

dent of both sellers and buyers. In addition, the Deliverator need believe only
the Auctioneer about what quantity should be supplied and what price charged.

The newService message specifies what the bidder wishes to buy (via the
ServiceDesc argument) and where the funds to buy the service are to come
from (the Account object expenses). ServiceDesc is not defined by this
protocol because it will vary with what is being auctioned; the file auction.idl
describes only the abstract protocol for this kind of market. A market in a par-
ticular commodity will define a subclass of ServiceDesc understood by all
participants in that market. For example, the market in distributed bandwidth
defines a derived CircuitDesc, our implementation of which is described in
Section 2.3.1.

The newService message returns a BidSlateEnvelope object, which the
Deliverator gets by sending the newBidSlate message to the Auctioneer:

The newBidSlate message takes as its arguments a ServiceReactor object
(newly created by Deliverator according to the ServiceDesc parameter it got
from the bidder) and the right to assign the value of a variable giving Deliver-
ator access to an Evictor object created by the Auctioneer. (The C++ function
call for this looks like myAuctioneer–>newBidSlate(service, &evictor).)
The purpose of Evictor is to enable the Deliverator to withdraw service from
any service consumer (the bidder or its client application) that is in arrears. In
so doing, it removes that consumer from the auction. Evictor accepts the mes-
sage evict:

ServiceReactor objects contain the terms for this particular sale: some quan-
tity of whatever commodity the Deliverator sells, and a sale price for that
amount of service. The Auctioneer sets these to initial values of zero until the
Bidder later places bids for some quantity of the service.

interface Deliverator {

 BidSlateEnvelope newService (ServiceDesc desc,

Account expenses);

};

interface Auctioneer {

 BidSlateEnvelope newBidSlate (ServiceReactor reactor,

out Evictor evictor);

 BidSlate unseal (BidSlateEnvelope envelope)

 raises (AlreadyOpened, NotSealedByMe);

};

interface Evictor {

 void evict ();

};

interface ServiceReactor : ServiceTicker {

 oneway void notice (Integer newQuantity, Integer newSalePrice);

 oneway void evictionNotice ();

 ServiceTicker view ();

The general ongoing auction protocol

Real-Time Video Delivery with Market-Based Resource Allocation 13

Since the quantity and price attributes inside the ServiceReactor always
change at the same time, a single notice message is used to specify their new
values. (ServiceReactor can therefore be considered an atomic reactor.)

In general, View objects (such as ServiceTicker) and their corresponding
Reactors are complementary: The Reactors are subclasses of the correspond-
ing View class, but another object can post a Reactor on a particular View to
accept notifications of status changes.

ServiceTicker is the superclass of ServiceReactor; whenever a ServiceRe-
actor receives the view request, it creates and returns a ServiceTicker object
that provides readonly access to the ServiceReactor’s attributes: the Ser-
viceDesc being bid upon, the (initially zero) quantity and price, and whether
or not the ServiceReactor is still participating in the auction (the isEvicted
bit).

The addReactor message is used to post a “watchdog” object called a reactor
on the ServiceTicker receiving the message. Such reactors (a subclass of Ser-
viceReactor) will receive a notification whenever quantity or salePrice
changes, instead of having to poll the ServiceTicker.

Auctioneer returns a BidSlateEnvelope to the Deliverator; this is simply an
opaque object for secure delivery, by the Deliverator, of another object called
BidSlate from the Auctioneer to the bidder without the Deliverator being
able to see inside it.

Once the bidder receives the BidSlateEnvelope, it can ask the Auctioneer to
unseal it, which returns the enclosed BidSlate. As mentioned above, this
security is to guarantee the independence of the Auctioneer from the seller. A
BidSlateEnvelope can be unsealed only once; subsequent attempts to unseal
it will signal an exception. Thus a bidder that successfully unseals a BidSlate-
Envelope knows that it is starting with exclusive access to the BidSlate
inside.

 /*

 * One that just stores state and notifies reactors

 */

 static ServiceReactor make (ServiceDesc desc);

};

interface ServiceTicker {

 readonly attribute ServiceDesc serviceDesc;

 readonly attribute Integer quantity;

 readonly attribute Integer salePrice;

 readonly attribute boolean isEvicted;

 void addReactor (ServiceReactor reactor);

};

interface BidSlateEnvelope {

};

interface BidSlate {

 attribute sequence<BidSegment> bidSegments;

IDL has both readonly and non-

readonly attributes. Declaring a

non-readonly attribute in an inter-

face implies two distinct messages

that will be accepted by objects

conforming to that interface: one to

set the attribute and one to read its

current value. Both are general-

purpose messages that can invoke

other behavior as well.

Components of the demonstration

14 Agorics Technical Report ADd004P

The BidSlate object is the bidder’s sole interface to the Auctioneer; in it, the

bidder specifies the piecewise-linear function describing what price the bidder

is willing to pay as a function of quantity of service received. This function is

represented as a set of BidSegments.

Each BidSegment describes a straight-line segment on a graph of price as a

function of quantity. It actually represents an infinite number of bids (ordered

pairs of price and quantity values), one for any particular point along the line

segment described. Bids are mutually exclusive; only one will be taken. (The

make message implements the special case of a BidSegment consisting of a

single point.) These intermediate bids are linearly interpolated from the values

at the endpoints. We explicitly assume that a bid of (Q,P) means “I am willing

to buy at least Q, at no greater cost than P.”

A BidSlate consists of a set of BidSegments that together define the bidder’s

entire price-quantity function (Figure 2.8). Each BidSegment is a linear piece

of the piecewise-linear function described by the BidSlate.

The BidSegments of a valid BidSlate must be mutually exclusive; the same

price or quantity can not be in the range of more than one BidSegment. The

set of BidSegments should be sorted in increasing order of both price and

quantity so that the function described by BidSlate is monotonically increas-

ing. To keep the algorithms simple and uniform, it is further required that the

BidSlate start with a BidSegment whose lowBidPrice and lowQuantity are

both zero. However, a BidSlate may be discontinuous. (In the current incarna-

 readonly attribute ServiceTicker view;

};

struct BidSegment {

 Integer lowBidPrice, lowQuantity;

 Integer highBidPrice, highQuantity;

 static BidSegment make (Integer bidPrice, Integer quantity);

};

Fig. 2.7 One BidSegment (infinitely many bids)

Price

Quantity

B = (highQuantity, highBidPrice)
highBidPrice

lowBidPrice

lowQuantity highQuantity

A = (lowQuantity, lowBidPrice)

The general ongoing auction protocol

Real-Time Video Delivery with Market-Based Resource Allocation 15

tion of the video delivery system, we are imposing the additional requirement
that every BidSegment be a single point; i.e., both prices and quantities are
quantized.)

Figure 2.8 displays a BidSlate which has several things wrong with it.

The requirement that a BidSlate include (0,0) as a bid simplifies the Auction
protocol by ensuring, in combination with the requirement of monotonic
increase, that every BidSlate can be satisfied (if need be, by the delivery of
zero quantity for zero price). A bid to acquire some quantity of channel capac-
ity for zero dollars is unreasonable (unlikely to be fulfilled if other bidders are
in the auction).

At this point, the bidder has sent a newService request to the Deliverator and
received a BidSlate object as a result. The BidSlate is initially empty; the bid-
der creates and changes its bids by setting the bidSegments attribute
(containing the actual ordered sequence of BidSegments). The BidSlate
object is created and implemented by the Auctioneer because the Auctioneer

Fig. 2.8 A BidSlate is composed of arbitrarily many BidSegments

Price = BidSlate (Quantity)

Price

Quantity

Fig. 2.9 An invalid BidSlate

Price

Quantity

Two BidSegments

Two BidSegments

No BidSegment includes (0,0)

This BidSegment shows price

include this
quantity

decreasing with increasing
quantity

include this price

Components of the demonstration

16 Agorics Technical Report ADd004P

must react whenever the bidder changes the BidSlate’s contents. In addition,
the Deliverator only has to believe the Auctioneer about what quantity should
be supplied and what price charged.

The Auctioneer takes in bids via BidSlates from multiple competing bidders.
The prices specified by each BidSlate represent the value to that application of
having a particular quantity of the commodity available to it. From these state-
ments of value, the Auctioneer computes an allocation of the available supply
of that resource that awards the resource to the highest-valued uses among the
set of multiple bidding clients, based on the assumption that the stated bid-
Prices accurately reflect value.

Based on that result, the Auctioneer changes the values of salePrice and
quantity visible through the ServiceTickers corresponding to all of the bid-
ders in the auction. All reactors posted on an individual ServiceReactor and
its ServiceTickers, including Deliverator and the bidder, are notified of the
assigned values and can react to them.

Once the Auctioneer sets the quantity to be delivered, the Deliverator reacts
by delivering to the client the quantity of service allocated to it. For example,
in a simple bandwidth auction, quantity is the bandwidth to be allocated to the
client’s virtual circuit. The Auctioneer may change that at any time, and the
Deliverator reacts by allocating a different share of bandwidth to that virtual
circuit and informing the application (via a ServiceTicker and reactor notifi-
cation) so it can adjust.

The attribute salePrice allows the Deliverator to know how much it should
charge, and the application how much it should pay. The amount the applica-
tion must pay the Deliverator need not be the same as salePrice, but
salePrice is a candidate amount set by a mutually-trusted third-party Auction-
eer. Any financial arrangement between the Deliverator and the application
which is mutually acceptable (such as salePrice plus some markup) is fine.

If the application doesn’t pay the Deliverator enough to satisfy it, the Deliver-
ator can evict the application from the BidSlate, by sending the evict message
to the Evictor specified in the original newBidSlate request to the Auctioneer
and removing that bidSlate from the auction.

Bidding Agent

BidSlate

Auctioneer

(1) bids()

(2) reallocate()
ServiceTicker

(3) notice(),
[based on auction allocation]

Deliverator

(4) reactor

Server

notifications

[within implementation]

Fig. 2.10 Events of bidding procedure

Bandwidth-specific auction

Real-Time Video Delivery with Market-Based Resource Allocation 17

2.3. Bandwidth-specific auction

2.3.1. Modeling the network

Figure 2.11 introduces a schematic representation of an ATM network, with
squares representing hosts, circles representing ATM switches, and dotted lines
representing virtual circuits between specific hosts. The file netmodel.idl

contains the interface descriptions for the various components of such a repre-
sentation.

Hosts and switches are represented by Terminus objects; each physical fiber
linking two termini is represented by a pair of OneWayLinkViews, one for
each direction. Each terminus has one set each of incoming and outgoing phys-

ical fibers; these are represented by the two sequences of OneWayLinkViews
called inLinks and outLinks. The attribute tType indicates whether the termi-
nus is a host or a switch, or is out of service (DISPOSED). Finally, each
Terminus is identified by both a name and an index number; the latter, as we
shall see later, identifies this Terminus to a NetworkView object.

The location and direction of a OneWayLinkView object are specified by the
two termini it joins, called from and to. The link knows its positions in the
inlinks or outlinks sequence of each Terminus (fromIndex and toIndex). Its

interface Terminus {

 enum TType { HOST, SWITCH, DISPOSED };

 readonly attribute TType tType;

 readonly attribute sequence<OneWayLinkView> outLinks;

 readonly attribute sequence<OneWayLinkView> inLinks;

 readonly attribute string name;

 readonly attribute Integer index; // in network model's termini

};

= SWITCH

= VIRTUAL

= HOST

Fig. 2.11 Representation of an ATM network

A

B

C

= PHYSICAL

TERMINUS

CIRCUIT

LINK

2 OneWayLinkViews

Components of the demonstration

18 Agorics Technical Report ADd004P

attributes bandwidth and price represent those characteristics of the real fiber
it represents.

A OneWayLinkView object accepts the addReactor message whose argu-
ment reactor is of the class OneWayLinkReactor or a subclass of it.
Subsequently, whenever one of the attributes of the OneWayLinkView
changes, it will send to reactor one of the notice messages defined for One-
WayLinkReactor. In particular, the noticeDisconnect message tells the

reactor when the OneWayLinkView has become disconnected—that is, when
its from and to attribute have become NIL. The view message, sent to the reac-
tor by another object, returns the OneWayLinkView that it is watching.

Similarly, a NetworkView object is watched by NetworkReactor objects set
by an addReactor message (each FooReactor class is a subclass of the cor-
responding FooView). The NetworkView represents the network as a
sequence of termini. It notifies its reactors of changes in its state with another

set of notice messages: noticeTerminus when a new Terminus has been
added to the network; noticeDisposal when a Terminus is withdrawn from
service; noticeConnection when a new OneWayLinkView has been created
from one Terminus to another; and noticeDisconnection when a OneWay-
LinkView goes out of service.

Another subclass of NetworkView called NetworkEditor is used to edit a net-
work description to keep it in conformity with the actual physical network.

interface OneWayLinkView {

 readonly attribute Integer bandwidth;

 readonly attribute Integer price;

 /* NIL only if disconnected */

 readonly attribute Terminus NIL_OK from;

 readonly attribute Terminus NIL_OK to;

 readonly attribute Integer fromIndex; // in from's outLinks table

 readonly attribute Integer toIndex; // in to's inLinks table

 void addReactor (OneWayLinkReactor reactor);

};

interface OneWayLinkReactor : OneWayLinkView {

 oneway void noticeBandwidth (Integer bandwidth);

 oneway void noticePrice (Integer price);

 oneway void noticeDisconnect ();

 OneWayLinkView view ();

};

interface NetworkView {

 readonly attribute sequence<Terminus> termini;

 void addReactor (NetworkReactor reactor);

};

In general, the view message lets

a Reactor pass along the capabil-

ity to read the attributes of the

View without passing the ability to

set them.

Bandwidth-specific auction

Real-Time Video Delivery with Market-Based Resource Allocation 19

Messages are provided to establish or disable hosts, switches, and OneWay-

LinkViews; set the attributes of OneWayLinkViews within the model; and

return the NetworkView on which this NetworkEditor operates.

Modeling the network is important because ATM networks, in their present

form, do not have flow control. An analogy can be made to the difference

between plumbing using pipes and plumbing using aqueducts. If you have a

tank of water at the top of a hill and wish to send water downhill through a sys-

tem of aqueducts, you need to come up with a model of the aqueduct system

and use the model to calculate how much water you can send safely down the

network. If more water is sent downhill than the aqueduct can handle, it simply

overflows, spilling some of the water. In a network, this means dropped pack-

ets and lost data.

If you instead have a network of pipes, you can simply open the valve, and the

pipes will admit only what they can deliver. Pipes provide feedback, in the

form of back-pressure, to the tank, controlling the amount of water that flows

downhill. Aqueducts provide no feedback from the real object, so an accurate

model is necessary to provide feedback. This is why we are throttling the net-

work at the Deliverator on each host—making sure that only as much data as

can be accommodated is sent down the ATM channel—and why it’s necessary

to have an accurate model of the ATM network.

interface NetworkReactor : NetworkView {

 oneway void noticeTerminus (Terminus terminus);

 oneway void noticeDisposal (Terminus terminus);

 oneway void noticeConnection (OneWayLinkView link);

 oneway void noticeDisconnection (OneWayLinkView link);

 NetworkView view ();

 static NetworkReactor make ();

};

interface NetworkEditor : NetworkView {

 Terminus newSwitch (string name);

 Terminus newHost (string name);

 void dispose (Terminus terminus);

 OneWayLinkView connect (Terminus from, Terminus to);

 void disconnect (OneWayLinkView link);

 void setBandwidth (OneWayLinkView link, Integer bandwidth);

 void setPrice (OneWayLinkView link, Integer price);

 NetworkView view ();

 static NetworkEditor make ();

};

Components of the demonstration

20 Agorics Technical Report ADd004P

2.3.2. The bandwidth auctioneer

The file netauction.idl connects the netmodel, auction, and bidder inter-

faces to implement an auction specific to the negotiated sale of network

bandwidth. The ServiceDesc for the network auction is called CircuitDesc.

It contains a description of a virtual circuit in terms of a sequence path of

OneWayLinkViews, as well as the beginning and end of the path in terms of

position in the outCircuits and inCircuits tables of the starting and ending

hosts.

The Auctioneer subclass which understands CircuitDescs is called NetAuc-

tioneer. It implements a centralized auction in distributed bandwidth. The

netAuctioneer is supplied with a NetworkEditor so it can set the prices of the

individual OneWayLinkViews in the network via the setPrice message. It

does not otherwise edit the network model (as if it had been given only a Net-

workView).

NetAuctioneer responds to changes in the network model as well as to the

coming and going of circuits and the placing of bids via BidSlates. If the net-

work model changes in such a way that live virtual circuits are disconnected,

the users of those circuits are evicted.

NetAuctioneer also takes the autoConnect request, by which the requester

asks NetAuctioneer to figure out a path between the hosts from and to. It may

try to find the path of least cost that satisfies the expected need for bandwidth

stated by the requester. This message provides the hook for adding adaptive

routing in the future.

Both NetAuctioneer and NetworkEditor have an associated NetworkView, a

model of the same real network. NetworkEditor makes changes in the model

in response to both real-world news of termini or links going out of service,

and in response to NetAuctioneer setting the prices of available links. Imple-

mentations of NetAuctioneer will contain a NetworkReactor which will

respond to notifications of changes in the network so that the NetAuctioneer

can update the prices and allocation of the network accordingly.

interface CircuitDesc : ServiceDesc {

 readonly attribute sequence<OneWayLinkView> path;

 readonly attribute Integer fromIndex; //in starting Host's outCircuits

 readonly attribute Integer toIndex; //in ending Host's inCircuits

};

interface NetAuctioneer : Auctioneer {

 readonly attribute NetworkView network;

 CircuitDesc connect (sequence <OneWayLinkView> path);

 CircuitDesc autoConnect (Terminus from, Terminus to,

 Integer expectedBandwidth);

 static NetAuctioneer make (NetworkEditor net);

};

Bidding agents and their strategies

Real-Time Video Delivery with Market-Based Resource Allocation 21

The current NetAuctioneer computes an overall allocation of bandwidth to
circuits which maximizes total aggregate value delivered to the community of
users, assuming that their bid prices are an accurate statement of the value to
them of various quantities of bandwidth. It then charges them an amount, the
opportunity cost, that we believe causes it to be in their interest to “tell the
truth.”

The current implementation of the NetAuctioneer is unrealistic in two
regards. First, it is a single centralized entity which requires a global model of
the network, rather than a distributed network of auctioneers each of whom
have local knowledge only of parts of the net. Second, it computes both alloca-
tions and prices by combinatorial search with exponential cost, rather than
approximating ideal results in exchange for a reasonable computational bur-
den. This latter tradeoff is itself a ripe opportunity for the application of agoric
principles.

2.4. Bidding agents and their strategies

This section defines a number of interfaces for communication between buyers
and sellers. As mentioned in Section 2.2, the end-user of a purchased service
may express needs in terms very different from those understood by the end-
suppliers. In the example of client-server video, the bidding agent at the view-
ing end may express levels of quality of service in terms of composite
quantities—frame rate, resolution, color depth—rather than the separate
resources—network bandwidth, CPU time—which the server must purchase
to provide the service. The various programs along the way each negotiate for
the resources they need, using the protocols and descriptions of service that
their suppliers understand.

Figure 2.2 shows the bidding agents of several programs interacting to provide
service to a user. The video viewer separates the user’s request into the
resources it needs to provide the requested service—CPU on the local
machine, and video from the video server. The video server in turn requests
from its suppliers the resources it needs—CPU time, and an ATM virtual cir-
cuit to the client. This decomposition by an intermediate agent of a requested
service into the resources needed to fulfill the request is the equivalent, in the
performance domain, of the subcontracting that goes on, via object-oriented
programming, in the domain of program correctness.

NetworkEditor

NetworkReactorImpl

NetAuctioneer

Fig. 2.12 Mutual dependence for network models

Components of the demonstration

22 Agorics Technical Report ADd004P

The file bidder.idl describes general interfaces for auction-specific bidding
protocols and for bidding agents that employ them. The QualityOfService
interface is defined without any particular methods for the sake of generality:

The other interfaces are subclasses of QualityOfService. SingleQOS speci-
fies a single discrete service, with a single indifference price telling the bidding
agent how badly you want that service. If the service is available at the stated
price or lower, it is provided; if not, nothing is provided. “Nothing” is always
available; in fact, the delivery of nothing (NoService) is always listed as an
available quality of service, so that denial of service can be stated by the bid-
ding agent as delivery of NoService—a kind of delivery, rather than a special
case. (If NoService is delivered, an honest bidding agent will ensure that the
bidder’s Account is not charged.)

The interface BiddingAgent is obtained by a client in response to a request for
service made to a server. (The request itself is service-specific, so no general
protocol is given as part of BiddingAgent.) It is presumed that the request
takes as a parameter an Account object via which the client pays the server.

The client then inquires of the BiddingAgent object what qualities of services
are available (expressed in terms of subclasses of QualityOfService), and
assigns indifference prices to express the degree to which each is desired. An
honest bidding agent will try to bid in such a way as to get the client the most
for its money, according to the stated preferences, and to arrange for the cli-
ent’s Account to be charged accordingly. The BiddingAgent informs the
client what was obtained and for how much via the deliveredQuality and
salePrice attributes.

interface QualityOfService {

 readonly attribute string name;

};

interface SingleQOS : QualityOfService {

 attribute Integer indifferencePrice;

};

interface NoService : QualityOfService {

};

interface BiddingAgent {

 sequence<QualityOfService> qualities ();

 readonly attribute Integer deliveredQuality;

 readonly attribute Integer salePrice;

 void addReactor (QOSReactor reactor);

};

Deliverators

Real-Time Video Delivery with Market-Based Resource Allocation 23

Like some of the objects described in the previous section, BiddingAgent also
has a reactor subclass, QOSReactor, subclasses of which can be set to receive
notification of any changes in the BiddingAgent’s status and act accordingly.

2.5. Deliverators

The Sun Microsystems ATM host interface architecture for managing ATM
networks is particularly well-suited to implement agoric management of band-
width. This interface treats a physical ATM link as a separable bundle of 256
bandwidth groups, subsets of which can be assigned to the initial (outgoing)
segment of an ATM virtual circuit. This makes the individual physical links of
an ATM network nicely divisible for assignment to particular virtual circuits in
response to the result of the bandwidth auction.

2.6. Application/user interfaces for
bidding agents

The user interface for the video client’s bidding agent allows the user to
express the maximum price he is willing to pay for each of several levels of
video quality, where “video quality” is defined as a set of values for specific
components like resolution, bit depth, frame rate and so forth. (These price-
quality pairs become single-point BidSegments that together make up a Bid-
Slate (see Figure 2.8).

The current user interface to the bidding agent (Figure 2.13) defines a set of

predefined and named quality levels and provides sliders to set, for each qual-
ity level, the maximum price the user is willing to pay for that level of video
quality. It also displays the current level of quality the user is receiving and the
price paid for it.

This design shows that simple interfaces can capture a user’s price-vs.-quality
preferences in a straightforward and uncomplicated manner, even when the cri-
teria which define a particular quality level are complicated and multiple. The

interface QOSReactor : BiddingAgent {

 oneway void notice (Integer quality, Integer price);

 BiddingAgent view ();

};

The user interface presented here

is one example. The design of the

QP agent user interface will evolve

as the development of the system

progresses.

Fig. 2.13 The Video Palette

Best
High

Medium
Low
Poor

Audio Only

Setting bid
price for:

$2.55 per hr

50 Mbps

Now receiving:

High
110 Mbps

$3.10
per hour

Often, the system’s default bidding

strategies will be adequate, and

the user won’t need to deal with

the bidding agent interface at all.

Components of the demonstration

24 Agorics Technical Report ADd004P

user interfaces to bidding agents for different applications will be specific to
that application, but can incorporate some of the same simplifying design con-
cepts shown here.

2.7. Interaction of the components

Figure 3.1 shows a broad view of how the various objects which make up the
system exchange messages to implement the intended behavior. The black dots
represent proxies for objects at the other end of the arrows.

Reactors are used for one process to monitor another. Process-watching is
implemented by notification, not by polling; when an object of type Foo
undergoes a change which other processes should know about, it transmits a
notification to every process that has posted a FooReactor on it.

The architecture of the system is secure when implemented on top of a secure
communications medium.

Fig. 3.1 Message-passing between objects

MyServiceReactor

BiddingAgent

MyQOSReactor

Account

Deliverator

MyServiceReactor

(delivered bandwidth)

BidSlate Evictor

ATM Host Controller

Server

Client

ServiceTicker

MyNetReactor

Auctioneer

NetReactorImpl

NetEditor

Real-Time Video Delivery with Market-Based Resource Allocation 25

3. Bibliography

[1] Anderson, M., Pose, R. D., and Wallace, C. S., “A Password-Capability

System”, The Computer Journal, Vol. 29, No 1, 1986.

[2] Axelrod, Robert, The Evolution of Cooperation. New York: Basic

Books, 1984.

[3] Coase, R. H., “The Nature of the Firm,” in Economica: New Series

(1937), Vol. IV, reprinted in Stigler, G. J., and Boulding, K. E. (eds.),

Readings in Price Theory. Chicago: Richard D. Irwin, Inc., 1952.

[4] Cocchi, Ron; Shenker, Scott; Estrin, Deborah; and Zhang, Lixia, “Pric-

ing in Computer Networks: Motivation, Formulation, and Example,” in

IEEE/ACM Transactions on Networking, Vol. 1, No. 6 (December,

1993).

[5] Dawkins, Richard, The Extended Phenotype. New York: Oxford Uni-

versity Press, 1982.

[6] Dawkins, Richard, The Selfish Gene. New York: Oxford University

Press, 1976.

[7] Drexler, K. Eric, and Mark S. Miller, “Incentive Engineering for Com-

putational Resource Management,” in The Ecology of Computation, B.

A. Huberman, ed. Amsterdam: Elsevier Science Publishers, 1988.

[8] Ferguson, D.F. “The Application of Microeconomics to the Design of

Resource Allocation and Control Algorithms” (doctoral dissertation).

[9] Friedman, David, The Machinery of Freedom: Guide to a Radical Cap-

italism. New York: Harper and Row, 1973.

[10] Fudenberg, Drew, and Tirole, Jean. Game Theory. Cambridge, MA:

MIT Press, 1993.

[11] Haase, Kenneth W., Jr., “Discovery Systems,” in ECAI ’86: The 7th

European Conference on Artificial Intelligence (July 1986), Vol. 1.

[12] Hamming, R. W., “One Man’s View of Computer Science,” in Ashen-

hurst, Robert L., and Graham, Susan (eds.), ACM Turing Award

Lectures: The First Twenty Years 1966-1985. Reading, MA: Addison-

Wesley, 1987.

[13] Hardin, Garrett, “The Tragedy of the Commons,” in Science (13

December 1968) Vol. 162.

Bibliography

26 Agorics Technical Report ADd004P

[14] Hardy, Norm, and Tribble, E. Dean, “The Digital Silk Road.” To appear

in Agoric Systems: Market-Based Computation, edited by W. Tulloh,

M. S. Miller, and D. LaVoie.

[15] Harris, Jed, Yu, Chee, Harris, Britton, Market Based Scheduling (1987)

in preparation.

[16] Hayek, Friedrich A., “Cosmos and Taxis,” in Law, Legislation, and Lib-

erty, Vol. 1: Rules and Order. Chicago: University of Chicago Press,

1973.

[17] Hayek, Friedrich A., “Economics and Knowledge,” from Economica,

New Series (1937), Vol. IV.; reprinted in Hayek, Friedrich A. (ed.),

Individualism and Economic Order. Chicago: University of Chicago

Press, 1948.

[18] Hayek, Friedrich A., Denationalisation of Money, 2nd Ed. London: The

Institute of Economic Affairs, 1978.

[19] Hayek, Friedrich A., New Studies in Philosophy, Politics, Economics,

and the History of Ideas. Chicago: University of Chicago Press, 1978.

[20] Hayek, Friedrich A., The Constitution of Liberty. Chicago: University

of Chicago Press, 1978.

[21] Hayek, Friedrich A., The Counter-Revolution of Science: Studies on the

Abuse of Reason. Indianapolis: Liberty Press, 1979.

[22] Hayek, Friedrich A., Unemployment and Monetary Policy: Govern-

ment as Generator of the “Business Cycle.” San Francisco, CA: Cato

Institute, 1979.

[23] Hofstadter, Douglas R., “The Prisoner’s Dilemma Computer Tourna-

ments and the Evolution of Cooperation,” in Metamagical Themas:

Questing for the Essence of Mind and Pattern. New York: Basic Books,

1985.

[24] Hogg, Tad, and Huberman, Bernardo, “Controlling Chaos in Distrib-

uted Systems,” Xerox PARC Technical Report #SSL–9052 (Nov.

1990).

[25] Holland, John H., Holyoak, Keith J., Nisbett, Richard E., and Thagard,

Paul R. Induction: Processes of Inference, Learning, and Discovery.

Cambridge, MA: MIT Press, 1986.

[26] Kahn, Kenneth M., and Mark S. Miller, “Language Design and Open

Systems,” in The Ecology of Computation, B. A. Huberman, ed.

Amsterdam: Elsevier Science Publishers, 1988.

[27] Lenat, Douglas B., “The Role of Heuristics in Learning by Discovery:

Three Case Studies,” in Michalski, Rysznard S., Carbonell, Jaime G.,

and Mitchell, Tom M. (eds.), Machine Learning: An Artificial Intelli-

gence Approach. Palo Alto, CA: Tioga Publishing Company, 1983.

[28] Lenat, Douglas B., and Brown, John Seely, “Why AM and Eurisko

Appear to Work,” in The Ecology of Computation, B. A. Huberman, ed.

Amsterdam: Elsevier Science Publishers, 1988.

[29] Miller, Mark S., and K. Eric Drexler, “Comparative Ecology: A Com-

putational Perspective,” in The Ecology of Computation, B. A.

Huberman, ed. Amsterdam: Elsevier Science Publishers, 1988.

Interaction of the components

Real-Time Video Delivery with Market-Based Resource Allocation 27

[30] Miller, Mark S., and K. Eric Drexler, “Markets and Computation: Ago-

ric Open Systems,” in The Ecology of Computation, B. A. Huberman,

ed. Amsterdam: Elsevier Science Publishers, 1988.

[31] Miller, Mark S., Bobrow, Daniel G., Tribble, Eric Dean, and Levy,

Jacob, “Logical Secrets,” in Shapiro, Ehud (ed.), Concurrent Prolog:

Collected Papers. Cambridge, MA: MIT Press, 1987.

[32] Nagle, John B., “On Packet Switches with Infinite Storage,” in IEEE

Transactions on Communications, v. 35, no. 4, April, 1987.

[33] Nieh, Jason, Northcutt, J. Duane, Lam, Monica S., and Hanko, James

G., “A Scheduling Facility in Support of Multimedia Aplications.”

[34] Nisbett, Richard, and Ross, Lee, Human Inference: Strategies and

Shortcomings of Social Judgment. Englewood Cliffs, NJ: Prentice-

Hall, 1980.

[35] Rivest, R., Shamir, A., and Adelman, L., “A Method for Obtaining Dig-

ital Signatures and Public-Key Cryptosystems,” in Communications of

the ACM (Feb. 1978) Vol. 21, No. 2.

[36] Smith, Maynard J., and Price, G. R., “The Logic of Animal Conflicts,”

in Nature (1973) 246.

[37] Star, Spencer, “TRADER: A Knowledge-Based System for Trading in

Markets,” in Economics and Artificial Intelligence First International

Conference (Aix-En-Provence, France, September 1986).

[38] Sutherland, I.E., “A Futures Market in Computer Time,” in Communi-

cations of the ACM (June 1968) Vol. 11, No. 6.

[39] Tribble, Eric Dean, Miller, Mark S., Kahn, Kenneth M., Bobrow,

Daniel, Abbott, C., and Shapiro, Ehud, “Channels: A Generalization of

Streams,” Logic Programming: Proceedings of the Fourth Interna-

tional Conference, MIT Press.

[40] Waldspurger, C. A., Hogg, T., Huberman, B. A., Kephart, J.O., and

Stornetta, W.S. “Spawn: A Distributed Computational Economy.”

IEEE Transactions on Software Engineering, Vol. 18, No. 2, February

1992.

[41] Wickler, Wolfgang, Mimicry in Plants and Animals. New York: World

University Library/McGraw-Hill, 1968.

[42] Williamson, Oliver, Markets and Hierarchies: Analysis and Anti-Trust

Implications. New York: Free Press, 1975.

[43] Wilson, Edward O., Sociobiology. Cambridge, MA: Belknap Press/

Harvard University Press, 1975.

[44] Wallace, C.S. and Pose, R.D. “Charging in a Secure Environment” Pro-

ceedings of the International Workshop on Computer Architectures to

Support Security and Persistence, Bremen, FRG, 1990. (A revised ver-

sion has been published in Security and Persistence, Bremen 1990. J.

Rosenberg and J.L. Keedy (Editors) Springer-Verlag Workshops in

Computing Series. ISBN 3-540-19646-3, pp. 85-96.)

Bibliography

28 Agorics Technical Report ADd004P

